-16t^2+20+300=5

Simple and best practice solution for -16t^2+20+300=5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -16t^2+20+300=5 equation:



-16t^2+20+300=5
We move all terms to the left:
-16t^2+20+300-(5)=0
We add all the numbers together, and all the variables
-16t^2+315=0
a = -16; b = 0; c = +315;
Δ = b2-4ac
Δ = 02-4·(-16)·315
Δ = 20160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20160}=\sqrt{576*35}=\sqrt{576}*\sqrt{35}=24\sqrt{35}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{35}}{2*-16}=\frac{0-24\sqrt{35}}{-32} =-\frac{24\sqrt{35}}{-32} =-\frac{3\sqrt{35}}{-4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{35}}{2*-16}=\frac{0+24\sqrt{35}}{-32} =\frac{24\sqrt{35}}{-32} =\frac{3\sqrt{35}}{-4} $

See similar equations:

| 3y^2-13y=0 | | 7x^2-56x+56=0 | | 2x2+4x=9x+18 | | 48x^2-120x-72=0 | | 2x+50=3x+5 | | 7x^2-56x+56x=0 | | 26/7=350/g | | 26/7=g/350 | | 16t^2+20+300=1 | | 5(b-12)=4b-48 | | 16t^2+20+300=5 | | 7=3d−-1 | | -5r+32=51 | | 2n^-15n=-13 | | 3(4x+3)-2=12x7 | | 3-12+5k=15-4k | | 3x^2+8x+28=0 | | 8-6x+10x-15=20-5x | | 6-4=k | | 4^x^2+2=4^3x | | −15+b=−8 | | z/4+ 18= 20 | | 31=6(p+71)−-13 | | 56/y=7 | | m/2-4=7/2-m/5 | | 1/5x=-1/6x+1/5 | | 3x^2-13=-88 | | 56y= 7 | | 42y+2y=44 | | 9x-4+12x-55=180 | | x.x+8x+15=0 | | 24/10=x/35 |

Equations solver categories